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Abstract - Recently, higher education has seen an 

increasing emphasis on the prominent role of 

computational thinking in all disciplines. Computational 

thinking is advocated as not only a fundamental skill or 

concept in computer science but also a core competency 

for all disciplines. Teaching students in non-computer 

science majors computing thinking is challenging 

because students do not have experts’ mental models. 

This study investigates the knowledge gap that non-

computing major college students (n=126) possess about 

computational thinking in an introductory MS Excel 

course by measuring their performance using 

spreadsheet functions in three categories: recall, 

application, and problem solving. The empirical result, 

analyzed using ANOVA, shows that students can recall 

the meaning of those functions but seem to have trouble 

using them correctly and precisely (cued or uncued). 

Students’ test results suggest the following issues:  

(1) problems with understanding the data type, (2) 

failure in translating problems to productive 

representations using spreadsheet functions, and (3) 

inadequate stipulation of the computational 

representations in precise forms. Addressing these 

problems early and explicitly in future classes could 

improve the education of computational thinking and 

alleviate difficulties students may experience in using 

computational thinking in learning and problem solving. 

 

Index Terms–Computational Thinking, Computer Science 

Education, Spreadsheet Functions, Problem Solving. 

INTRODUCTION 

Recently, computer scientists have stressed the prominent 

role of computational thinking (CT) in all disciplines and 

computer science educators should ―make computational 

thinking the 21st century literacy‖ [1]. They argue that CT 

should be a core competency that provides students with a 

grounding for controlling and managing cognitive activities, 

which improves problem solving in all disciplines [2], [3]. 

The tasks people face at work every day are growing in 

scope and complexity. CT prepares learners in different 

disciplines for those challenges. As educators, we should 

include CT in our curriculum and facilitate CT learning at 

different times. 

This paper begins with the definition of CT, describes 

the demographics of the study participants, our research 

design, and a description of the measurement instrument.  It 

is followed by descriptive and statistical analyses in the 

results section.  In the discussion section, the implication of 

the data and proposed future works are presented. 

 

COMPUTATIONAL THINKING 

CT may sound like a skill only useful in computer science. 

Yet, as Denning stated [3] ―Computational thinking is part 

of computer science, but is not the whole story.‖ Beyond 

computer programming, software engineering, or 

algorithms, CT is, more precisely, an ability or skill to 

analyze a problem, create abstraction, and solve it 

effectively [3]. This problem-solving process may or may 

not involve using technology. Knowing how to use a 

particular software application does not represent the 

entirety of CT. Advocates of CT note that CT consists of 

both mental tools and processes that differentiate CT from 

traditional computer programming skills. 

One report generated by the Committee of the 

Workshops on Computational Thinking [3] has a great deal 

of discussions and descriptions about the nature and scope of 

CT. To illustrate the skill sets involved in CT, we now 

describe some characteristics of CT briefly. 

 Automation of abstractions: Computational thinking 

focuses on the ability to manage complex situations by 

generating abstractions and maintaining the 

relationships among them. 

 Precise representations: To generate abstractions, we 

need to have formal representations that reflect our 

cognitive processes and structures (discerning aspects of 

the situation). 

 Systematic analysis: This characteristic of CT will 

enable us to generate hypothesis and search for a 

plausible solution systematically. 

 Repetitive refinements: During problem solving, we 

consistently evaluate the current situation against our 

previous experience or our prediction until the best 

solution is reached. 

I. Why Computational Thinking? 

Modern technologies are so pervasive that computer literacy 

is no longer merely for a small number of computer and 

information technology professionals. Many jobs either 

require computing skills or benefit from CT in today’s 

society. CT can help learners of all disciplines develop 

analytical skills and problem abstractions that help them 

solve their daily problems on the job. For instance, those 
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who use word processors should know that text content is 

separated from its format so that they can manipulate any 

portion without affecting others; those who use databases 

should know how data is processed behind the scenes so that 

they could better manipulate data without violating the 

implicit rules or create very expensive operations.  

II. How to Teach Computational Thinking? 

Computer scientists acquire CT through formal training at 

universities and experience on the job. CT of experts 

becomes tacit and spontaneous through everyday use. For 

example, experts naturally break a problem apart into 

smaller pieces and tackle them individually. Experts also 

readily repeat and refine a process until it is accurate and 

optimal. CT skills, however, can be difficult to acquire for 

novice learners, especially non-computing majors. This is 

oftentimes difficult because they do not possess or are not 

used to computational mindsets and analytical methods. 

Often non-computing majors’ opportunistic (non-systematic) 

approach may not be the best way to manage and solve a 

complex problem. 

Educators are increasingly incorporating CT curriculum 

into different grade levels. Lee and her colleagues reported 

their effort in promoting K-12 students in CT and proposed a 

three-stage progression (use->modify->create) for 

instructional designers [4]. Lu and Fletcher proposed to 

teach vocabularies and symbols (parts of the Computational 

Thinking Language) before CS students encounter their first 

programming course [5]. They suggested pre-college 

students would be better prepared for college if they are 

introduced to such symbolic representations. 

To teach CT as a literacy skill to all disciplines, Guzdial 

[1] argues that computer science educators must understand 

why the novices struggle and where they struggle. To 

understand these problems and hence improve teaching and 

learning, we should collect formative data about learners and 

content. However, because computer scientists often take the 

fundamental knowledge of computing for granted, we often 

neglect concepts novices usually struggle with. In future 

teaching, mental tools and thinking processes should be 

taught explicitly to novice learners. 

One essential CT skill is function abstraction [5] which 

computer scientists use almost every day directly and 

indirectly. The ability to use functions correctly and 

effectively requires several CT skills such as data 

representation, data process, abstraction, procedural 

thinking, etc. The use of functions by experts is so common 

that we have not paid enough attention to analyze and 

document how the concept of functions is internalized by 

novices or non-computing students, and what could be the 

problematic areas for learning functions among various 

aspects of CT. We thus look at functions in this study. 

III. Our Research Design  

Based on the characteristics of CT and the complexity 

levels of function learning, we parsed the learning of using 

spreadsheet functions into three categories: recall, 

application, and problem solving. 

The recall category is rote memorization of function 

definitions and arguments. This is the lowest level of 

learning in a cognitive domain in Bloom’s taxonomy of 

learning hierarchy [6]. In the application category, learners 

are presented with a set of data for which spreadsheet 

functions should be used to generate the right answers. In the 

problem solving category, learners are asked to solve a 

problem scenario using function(s) of their choice. The 

problem solving category, hence, is uncued where the 

learners have to search in their knowledge repository for a 

set of suitable functions to generate expected answer. 

Each category requires different level of cognitive 

processes, which in turn can be facilitated by different 

instructional strategies. To teach the use of spreadsheet 

functions effectively, computer science educators need to 

understand the knowledge acquisition of all three categories 

and any underpinning problems when they experience 

trouble. This research study is to explore: (1) in which 

category novice learners struggle the most, and (2) the 

relationships among these categories.  

METHOD 

We recruited 126 non-computing major students who took a 

computer literacy course (introduction to spreadsheets and 

databases) that was required for many of their majors. The 

course was designed for second-year non-computing major 

college students, although our demographic data showed the 

majority were juniors. Participation in this study was 

voluntary and participants received 2% extra credit. Among 

all participants, two were in majors closely related to 

information technology (one was from Environmental 

Systems Engineering and the other one was from 

Management Information Science); other participants were 

from liberal arts, health and human development, or 

agricultural science. There were 13% underclassman 

(freshmen and sophomores) and 87% upperclassman.  

A week after the spreadsheet section of the class was 

completed, participants used Microsoft Excel 2007 to 

answer questions of the three categories in an hour session. 

Questions of different categories were in separate 

spreadsheets, and they were instructed not to switch to the 

next spreadsheet until they completed all the questions on 

one sheet. The measurement was created based on the course 

content by the instructor and includes: 

(1) Recall: participants were asked to explain the 

purpose/meaning of a function and its argument(s). They 

entered an open-ended description directly in a cell on the 

spreadsheet. Figure 1 shows an example recall question.  
 

 
FIGURE 1 

A RECALL QUESTION EXAMPLE 
 

VLOOKUP(lookup_value, table_array, col_index_num, 

[range_lookup])

Explain what these functions are
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(2) Application: participants were asked to use data and 

a particular function to generate a correct answer. In this 

category, they were cued by what data was available and 

which function they should use. Figure 2 shows an example 

application question.  

 
FIGURE 2 

AN APPLICATION QUESTION EXAMPLE 

 

 (3) Problem solving: learners were asked to choose 

functions freely to solve two problems. There was no cue 

with regard to which function should be used. Figure 3 

shows a problem solving example. 

 

FIGURE 3 
A PROBLEM SOLVING QUESTION EXAMPLE (ONLY TWO RECORDS ARE SHOWN 

IN HERE; THE ACTUAL QUESTION HAS MORE RECORDS)  

 

Participants were instructed not to leave the Excel 

working environment—to prevent them from seeking help 

online. In addition, they were asked not to use Excel Help. 

They could, however, use the tooltip that showed function 

syntax when students enter function name by typing. They 

could also use the function argument dialog box for 

assistance. 

The measurement instrument comprises: (a) 12 recall 

questions that count for a total of 24 points, with one point 

for the explanation of function and one point for the 

explanation of arguments; (b) 10 application questions (each 

counts for one point), and (c) two problem solving scenarios 

(nine functions required). The maximum scores for each 

category is 24, 10, and 9. This instrument was a workbook 

comprising multiple protected spreadsheets. Some of the 

cells in the spreadsheets were unlocked so that participants 

could only select and enter data, text, or formula into those 

unlocked cells. 

The grading criterion for both application and problem-

solving category is the following: a formula that contains a 

function must be used to generate the correct answer. Also 

students must use cell references rather than directly typing 

in data as function arguments. 

RESULTS 

Table I shows the basic statistics of students’ performance in 

all three categories. Individuals’ scores in each category 

were calculated by dividing the raw score by the maximum 

totals scores for its respective category. All Functions 

column includes all questions from our measurement 

instrument; Non-stat Functions column is generated using 

only the non-statistical functions in Excel 2007 from the 

measurement. The reason for excluding statistical functions 

is described in the following descriptions. 

To answer the first research question—what category do 

non-computing students struggle with the most—a one-way 

ANOVA was used to compare the mean scores of all three 

categories. Our hypothesis was that when task complexity 

increased (problem-solving > application > recall), learners’ 

performance would decrease. There was a significant 

difference on mean scores at the p < .05 level for these three 

categories (F(2, 375) = 715.7). A Tukey’s HSD post-hoc 

analysis revealed that there was a significant difference 

between recall and application and between recall and 

problem solving. There was no significant difference 

between application and problem solving although the mean 

score of problem solving was higher than that of application. 

Because a basic mathematical course was a prerequisite for 

this course, the concept of summary, average, and count 

should be part of students’ mental tools. Hence, students 

may already be familiar with basic statistical functions such 

as SUM, AVERAGE, and COUNT. To achieve a more 

accurate understanding of students’ newly-learned 

knowledge during this course, we removed the questions of 

statistical functions (according to the categorization of 

Microsoft Excel 2007) when calculating students’ scores, 

which generated another set of comparison (Non-Stat 

Functions column Table I). Based on the mean scores in the 

Non-stat Functions column, students’ performance 

decreased consistently when task complexity increased. This 

finding was consistent with our hypothesis, suggesting that it 

was easier for students to recall the purpose and syntax of a 

function than to use the function with a given problem, 

without a hint or cue. 

 
            TABLE I 

COMPARISON OF MEAN SCORES AND STANDARD DEVIATIONS (SD) AMONG 

THREE CATEGORIES. 

Categories All Functions 

M / SD* 

Non-Stat Functions 

M / SD* 

Recall 0.70 / 0.17 0.68 / 0.19 

Application 0.41 / 0.19 0.36 / 0.20 
Problem Solving 0.49 / 0.29 0.34 / 0.31 

*M: Mean; SD: Standard Deviation 

 

Table II shows paired t-test comparisons by categories. 

Students’ performances in all three categories were 

significantly lower after common statistical functions were 

excluded from the calculation. It indicates that for a 

common-concept function (e.g. total, average, and count) 

that students are already familiar with, their chances of 

recalling its meaning, applying it to a problem, and using it 

in a problem solving situation are all higher than those of an 

unfamiliar function. 
TABLE II 

SIMPLE T-TEST BETWEEN ALL FUNCTIONS AND NON-STAT FUNCTIONS BY 

CATEGORY 

Categories t (df) p 

Recall 3.73 (249.96) p <.005 

Application 3.87 (249.52) p <.005 
Problem Solving 9.83 (202.82) p <.005 

Interest Rate (annually) 0.09

Use PMT and type a formula in cell D7 to 

calculate a monthly payment

Term (years) 30

Loan amount 150000

Question 2

Facilities Payroll Data
Emp # Hourly Rate Classification Hire Date SupervisorShift

10 12.00$          Housekeeping 6/22/2005 Juarez Night

30 15.50$          Facilities Service 7/3/2003 Johnson Day

Average hourly wage for Housekeeping

Number of employees hired prior to 1/1/2005

Use the following payroll information for a facilities staff to calculate the average pay and count how many employees have 

worked for the hospital for over 5 years. Type your formula in cell B28 and B29
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To answer the second research question—how are these 

categories related to each other—three Pearson correlations 

on any two of three levels was calculated. Table III shows 

all three correlations are statistically significant:  between 

recall and application, r = .38 (n=126, p<.05); between recall 

and problem-solving, r = .33 (n=126, p<.05); between 

application and problem solving r = .52 (n=126, p<.05). 
TABLE III 

PEARSON CORRELATION COEFFICIENTS (R) BETWEEN CATEGORIES AMONG 

RECALL, APPLICATION, AND PROBLEM SOLVING  

Categories Recall Application 

Problem Solving .33 .52 
Application .38  

 

The Pearson correlation coefficients, shown in Table III, 

suggest that knowing the meaning of functions and their 

arguments helps students use functions and select an 

appropriate function for a problem solving scenario; the 

application score positively affect problem solving scores. 

That is, if students failed to apply a function correctly, it’s 

very likely that they do not know which function to use or 

cannot use functions correctly in a problem solving scenario. 

A further investigation of students’ use of functions in 

both application category and problem solving category 

revealed that common errors included wrong type of 

arguments (numeric when text is required, or vice versa), 

missing arguments, wrong logic statements, and wrong 

function syntax. We also noticed that students either did not 

understand or forgot the purpose of double quotation 

marks—indicating any alphanumeric character embedded in 

between pairs of them should be treated as text data. 

Students’ data representation in CT seemed weak. This is 

one of many reasons for which they could not use functions 

correctly. We also found that many participants did nothing 

more than the basic statistical functions in the problem 

solving category. 

DISCUSSION 

This study was to empirically investigate the challenges that 

non-computing major students faced in learning the use of 

spreadsheet functions. To a certain extent, our finding 

should also be applicable to novice learners when acquiring 

CT knowledge. Many researchers and educators in computer 

science community advocated that CT is an important skill 

for contemporary learners [1]-[3], [5], [7]. 

In our teaching experience, some areas of CT seemed 

especially difficult for non-computing majors. We created 

our measurement instrument based on two features of CT, 

application (abstraction of a problem) and problem solving, 

and added the recall (memory retention) category using 

spreadsheet functions to compare novices’ performance in 

each category. We found that students’ overall performance 

dropped significantly from recall to application and the 

performance in both application and problem solving 

categories were low—the correction rate was below 40% 

when statistical functions were excluded.  

Our results show that even though students can recall 

the meaning of spreadsheet functions, they cannot use them 

correctly, with cue (application) and without cue (problem 

solving). Apparently, to formally represent a problem in 

computational format is still not within their mental skills, 

even after they are hinted to use a possibly productive 

function. When we further examined the source of their 

errors, their performance seemed to indicate that they have 

trouble differentiating different types of data or to follow the 

function syntax precisely. We hypothesized that when 

students are not familiar with the concept, the input data 

must follow an exact format; otherwise students will have 

difficulty recognizing them. In some disciplines, the 

outcome may be a continuum and sometime negotiable. In 

computer science, engineering, mathematics, and others 

alike, the science is to be precise. We also hypothesized that 

the students do not have an integrated mental representations 

about different type of data and how to deal with them. To 

such students, data, whether it is numeric or text, are simply 

combinations of alphabets that computers should be able to 

store and process; whereas numeric data are treated very 

differently by a computer than text data. Weak CT leads the 

students to believe that computers are like humans who can 

treat these data as the same. 

Based on correlation coefficients of those three 

categories, recall scores positively correlate with both 

application and problem solving scores; application scores 

also positively correlate with problem solving scores. This 

result suggests that teaching should start with recall, but we 

need concentrate especially on application category, which 

seems to trouble most students. Better yet, the instructional 

strategies should encourage students to construct mental 

tools about computing. Pedagogical strategies such as 

problem-based learning [8] or case-based reasoning [9] may 

be useful for students to internalize CT skills and create 

individualized strategies fitting their styles. 

In the problem-solving category, many students did not 

answer the non-statistical function parts. This fact 

demonstrates in new learning, transferring from rote 

memory to problem solving is still difficult for novice 

learners. In addition, using text data without double 

quotation marks suggests that novice learners rely heavily on 

what they already know to make sense of new knowledge. In 

most part of our daily experiences, there is no difference 

between ―123‖ and 123. However, in a computational data 

representation, ―123‖ is a text data that has no particular 

meaning and 123 is a numerical value that indicates a 

quantity. When teaching CT to non-computational majors, 

we must consider and perhaps pinpoint these preexisting 

mental representations and help learners overcome such 

problems early in their learning. 

For future work, we should investigate the effect of a 

CT skill instruction before introducing spreadsheet functions 

on students’ performances. In addition, computer science 

educators should examine whether CT skills help learning in 

other scientific domains including social sciences. Teaching 

CT in all disciplines, as is right now, is a concept well 
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accepted in the computer science education community. To 

make a broader impact on our society, this concept must be 

diffused to other disciplines so it can become a core of our 

education. This diffusion needs empirical data support. 

A limitation of this work is the small number of 

questions in the problem solving category that had only five 

questions that used non-statistical functions. The 

measurement instrument can be improved by adding more 

functions from each category in the spreadsheet application 

in all three categories. This may help us analyze the exact 

computing thinking skills that are difficult to novice learners 

and why these skills are difficult for them. This will also 

help us understand the current status of CT in novices’ 

knowledge and improve teaching CT more effectively. 

CONCLUSION 

Computational thinking is not about computer programming.  

Instead, it is a cognitive tool that helps us understand and 

solve problems. Nowadays, CT is an increasingly important 

skill for success in work and society where more and more 

tasks require problem solving skills. In addition, the ubiquity 

of technology also makes CT a vital competency like 

literacy and math. As a result, higher education has 

pronounced the emphasis to provide opportunities for 

students to enhance CT skills—CT is gaining much 

momentum rapidly. 

Teaching CT to non-computing majors can be 

challenging. If CT were to be part of our core competency, 

we educators will have to conquer this challenge sooner or 

later. Understanding the learners and the tasks can be a 

pivotal step to making CT part of all curricula. This paper 

presents an empirical study that showed some of the 

weakness of novice learners. The findings provided us with 

the direction for our next step of teaching CT and showed a 

possibly effective approach to improve CT in non-

computing majors. 
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