
Session F3J

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3J-1

Teaching Computational Thinking to Non-

computing Majors Using Spreadsheet Functions

Kuo-Chuan (Martin) Yeh, Ying Xie, and Fengfeng Ke
martin.yeh@psu.edu, dr.ying.xie@gmail.com, fke@fsu.edu

Abstract - Recently, higher education has seen an

increasing emphasis on the prominent role of

computational thinking in all disciplines. Computational

thinking is advocated as not only a fundamental skill or

concept in computer science but also a core competency

for all disciplines. Teaching students in non-computer

science majors computing thinking is challenging

because students do not have experts’ mental models.

This study investigates the knowledge gap that non-

computing major college students (n=126) possess about

computational thinking in an introductory MS Excel

course by measuring their performance using

spreadsheet functions in three categories: recall,

application, and problem solving. The empirical result,

analyzed using ANOVA, shows that students can recall

the meaning of those functions but seem to have trouble

using them correctly and precisely (cued or uncued).

Students’ test results suggest the following issues:

(1) problems with understanding the data type, (2)

failure in translating problems to productive

representations using spreadsheet functions, and (3)

inadequate stipulation of the computational

representations in precise forms. Addressing these

problems early and explicitly in future classes could

improve the education of computational thinking and

alleviate difficulties students may experience in using

computational thinking in learning and problem solving.

Index Terms–Computational Thinking, Computer Science

Education, Spreadsheet Functions, Problem Solving.

INTRODUCTION

Recently, computer scientists have stressed the prominent

role of computational thinking (CT) in all disciplines and

computer science educators should ―make computational

thinking the 21st century literacy‖ [1]. They argue that CT

should be a core competency that provides students with a

grounding for controlling and managing cognitive activities,

which improves problem solving in all disciplines [2], [3].

The tasks people face at work every day are growing in

scope and complexity. CT prepares learners in different

disciplines for those challenges. As educators, we should

include CT in our curriculum and facilitate CT learning at

different times.

This paper begins with the definition of CT, describes

the demographics of the study participants, our research

design, and a description of the measurement instrument. It

is followed by descriptive and statistical analyses in the

results section. In the discussion section, the implication of

the data and proposed future works are presented.

COMPUTATIONAL THINKING

CT may sound like a skill only useful in computer science.

Yet, as Denning stated [3] ―Computational thinking is part

of computer science, but is not the whole story.‖ Beyond

computer programming, software engineering, or

algorithms, CT is, more precisely, an ability or skill to

analyze a problem, create abstraction, and solve it

effectively [3]. This problem-solving process may or may

not involve using technology. Knowing how to use a

particular software application does not represent the

entirety of CT. Advocates of CT note that CT consists of

both mental tools and processes that differentiate CT from

traditional computer programming skills.

One report generated by the Committee of the

Workshops on Computational Thinking [3] has a great deal

of discussions and descriptions about the nature and scope of

CT. To illustrate the skill sets involved in CT, we now

describe some characteristics of CT briefly.

 Automation of abstractions: Computational thinking

focuses on the ability to manage complex situations by

generating abstractions and maintaining the

relationships among them.

 Precise representations: To generate abstractions, we

need to have formal representations that reflect our

cognitive processes and structures (discerning aspects of

the situation).

 Systematic analysis: This characteristic of CT will

enable us to generate hypothesis and search for a

plausible solution systematically.

 Repetitive refinements: During problem solving, we

consistently evaluate the current situation against our

previous experience or our prediction until the best

solution is reached.

I. Why Computational Thinking?

Modern technologies are so pervasive that computer literacy

is no longer merely for a small number of computer and

information technology professionals. Many jobs either

require computing skills or benefit from CT in today’s

society. CT can help learners of all disciplines develop

analytical skills and problem abstractions that help them

solve their daily problems on the job. For instance, those

Session F3J

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3J-2

who use word processors should know that text content is

separated from its format so that they can manipulate any

portion without affecting others; those who use databases

should know how data is processed behind the scenes so that

they could better manipulate data without violating the

implicit rules or create very expensive operations.

II. How to Teach Computational Thinking?

Computer scientists acquire CT through formal training at

universities and experience on the job. CT of experts

becomes tacit and spontaneous through everyday use. For

example, experts naturally break a problem apart into

smaller pieces and tackle them individually. Experts also

readily repeat and refine a process until it is accurate and

optimal. CT skills, however, can be difficult to acquire for

novice learners, especially non-computing majors. This is

oftentimes difficult because they do not possess or are not

used to computational mindsets and analytical methods.

Often non-computing majors’ opportunistic (non-systematic)

approach may not be the best way to manage and solve a

complex problem.

Educators are increasingly incorporating CT curriculum

into different grade levels. Lee and her colleagues reported

their effort in promoting K-12 students in CT and proposed a

three-stage progression (use->modify->create) for

instructional designers [4]. Lu and Fletcher proposed to

teach vocabularies and symbols (parts of the Computational

Thinking Language) before CS students encounter their first

programming course [5]. They suggested pre-college

students would be better prepared for college if they are

introduced to such symbolic representations.

To teach CT as a literacy skill to all disciplines, Guzdial

[1] argues that computer science educators must understand

why the novices struggle and where they struggle. To

understand these problems and hence improve teaching and

learning, we should collect formative data about learners and

content. However, because computer scientists often take the

fundamental knowledge of computing for granted, we often

neglect concepts novices usually struggle with. In future

teaching, mental tools and thinking processes should be

taught explicitly to novice learners.

One essential CT skill is function abstraction [5] which

computer scientists use almost every day directly and

indirectly. The ability to use functions correctly and

effectively requires several CT skills such as data

representation, data process, abstraction, procedural

thinking, etc. The use of functions by experts is so common

that we have not paid enough attention to analyze and

document how the concept of functions is internalized by

novices or non-computing students, and what could be the

problematic areas for learning functions among various

aspects of CT. We thus look at functions in this study.

III. Our Research Design

Based on the characteristics of CT and the complexity

levels of function learning, we parsed the learning of using

spreadsheet functions into three categories: recall,

application, and problem solving.

The recall category is rote memorization of function

definitions and arguments. This is the lowest level of

learning in a cognitive domain in Bloom’s taxonomy of

learning hierarchy [6]. In the application category, learners

are presented with a set of data for which spreadsheet

functions should be used to generate the right answers. In the

problem solving category, learners are asked to solve a

problem scenario using function(s) of their choice. The

problem solving category, hence, is uncued where the

learners have to search in their knowledge repository for a

set of suitable functions to generate expected answer.

Each category requires different level of cognitive

processes, which in turn can be facilitated by different

instructional strategies. To teach the use of spreadsheet

functions effectively, computer science educators need to

understand the knowledge acquisition of all three categories

and any underpinning problems when they experience

trouble. This research study is to explore: (1) in which

category novice learners struggle the most, and (2) the

relationships among these categories.

METHOD

We recruited 126 non-computing major students who took a

computer literacy course (introduction to spreadsheets and

databases) that was required for many of their majors. The

course was designed for second-year non-computing major

college students, although our demographic data showed the

majority were juniors. Participation in this study was

voluntary and participants received 2% extra credit. Among

all participants, two were in majors closely related to

information technology (one was from Environmental

Systems Engineering and the other one was from

Management Information Science); other participants were

from liberal arts, health and human development, or

agricultural science. There were 13% underclassman

(freshmen and sophomores) and 87% upperclassman.

A week after the spreadsheet section of the class was

completed, participants used Microsoft Excel 2007 to

answer questions of the three categories in an hour session.

Questions of different categories were in separate

spreadsheets, and they were instructed not to switch to the

next spreadsheet until they completed all the questions on

one sheet. The measurement was created based on the course

content by the instructor and includes:

(1) Recall: participants were asked to explain the

purpose/meaning of a function and its argument(s). They

entered an open-ended description directly in a cell on the

spreadsheet. Figure 1 shows an example recall question.

FIGURE 1

A RECALL QUESTION EXAMPLE

VLOOKUP(lookup_value, table_array, col_index_num,

[range_lookup])

Explain what these functions are

Session F3J

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3J-3

(2) Application: participants were asked to use data and

a particular function to generate a correct answer. In this

category, they were cued by what data was available and

which function they should use. Figure 2 shows an example

application question.

FIGURE 2

AN APPLICATION QUESTION EXAMPLE

 (3) Problem solving: learners were asked to choose

functions freely to solve two problems. There was no cue

with regard to which function should be used. Figure 3

shows a problem solving example.

FIGURE 3
A PROBLEM SOLVING QUESTION EXAMPLE (ONLY TWO RECORDS ARE SHOWN

IN HERE; THE ACTUAL QUESTION HAS MORE RECORDS)

Participants were instructed not to leave the Excel

working environment—to prevent them from seeking help

online. In addition, they were asked not to use Excel Help.

They could, however, use the tooltip that showed function

syntax when students enter function name by typing. They

could also use the function argument dialog box for

assistance.

The measurement instrument comprises: (a) 12 recall

questions that count for a total of 24 points, with one point

for the explanation of function and one point for the

explanation of arguments; (b) 10 application questions (each

counts for one point), and (c) two problem solving scenarios

(nine functions required). The maximum scores for each

category is 24, 10, and 9. This instrument was a workbook

comprising multiple protected spreadsheets. Some of the

cells in the spreadsheets were unlocked so that participants

could only select and enter data, text, or formula into those

unlocked cells.

The grading criterion for both application and problem-

solving category is the following: a formula that contains a

function must be used to generate the correct answer. Also

students must use cell references rather than directly typing

in data as function arguments.

RESULTS

Table I shows the basic statistics of students’ performance in

all three categories. Individuals’ scores in each category

were calculated by dividing the raw score by the maximum

totals scores for its respective category. All Functions

column includes all questions from our measurement

instrument; Non-stat Functions column is generated using

only the non-statistical functions in Excel 2007 from the

measurement. The reason for excluding statistical functions

is described in the following descriptions.

To answer the first research question—what category do

non-computing students struggle with the most—a one-way

ANOVA was used to compare the mean scores of all three

categories. Our hypothesis was that when task complexity

increased (problem-solving > application > recall), learners’

performance would decrease. There was a significant

difference on mean scores at the p < .05 level for these three

categories (F(2, 375) = 715.7). A Tukey’s HSD post-hoc

analysis revealed that there was a significant difference

between recall and application and between recall and

problem solving. There was no significant difference

between application and problem solving although the mean

score of problem solving was higher than that of application.

Because a basic mathematical course was a prerequisite for

this course, the concept of summary, average, and count

should be part of students’ mental tools. Hence, students

may already be familiar with basic statistical functions such

as SUM, AVERAGE, and COUNT. To achieve a more

accurate understanding of students’ newly-learned

knowledge during this course, we removed the questions of

statistical functions (according to the categorization of

Microsoft Excel 2007) when calculating students’ scores,

which generated another set of comparison (Non-Stat

Functions column Table I). Based on the mean scores in the

Non-stat Functions column, students’ performance

decreased consistently when task complexity increased. This

finding was consistent with our hypothesis, suggesting that it

was easier for students to recall the purpose and syntax of a

function than to use the function with a given problem,

without a hint or cue.

 TABLE I

COMPARISON OF MEAN SCORES AND STANDARD DEVIATIONS (SD) AMONG

THREE CATEGORIES.

Categories All Functions

M / SD*

Non-Stat Functions

M / SD*

Recall 0.70 / 0.17 0.68 / 0.19

Application 0.41 / 0.19 0.36 / 0.20
Problem Solving 0.49 / 0.29 0.34 / 0.31

*M: Mean; SD: Standard Deviation

Table II shows paired t-test comparisons by categories.

Students’ performances in all three categories were

significantly lower after common statistical functions were

excluded from the calculation. It indicates that for a

common-concept function (e.g. total, average, and count)

that students are already familiar with, their chances of

recalling its meaning, applying it to a problem, and using it

in a problem solving situation are all higher than those of an

unfamiliar function.
TABLE II

SIMPLE T-TEST BETWEEN ALL FUNCTIONS AND NON-STAT FUNCTIONS BY

CATEGORY

Categories t (df) p

Recall 3.73 (249.96) p <.005

Application 3.87 (249.52) p <.005
Problem Solving 9.83 (202.82) p <.005

Interest Rate (annually) 0.09

Use PMT and type a formula in cell D7 to

calculate a monthly payment

Term (years) 30

Loan amount 150000

Question 2

Facilities Payroll Data
Emp # Hourly Rate Classification Hire Date SupervisorShift

10 12.00$ Housekeeping 6/22/2005 Juarez Night

30 15.50$ Facilities Service 7/3/2003 Johnson Day

Average hourly wage for Housekeeping

Number of employees hired prior to 1/1/2005

Use the following payroll information for a facilities staff to calculate the average pay and count how many employees have

worked for the hospital for over 5 years. Type your formula in cell B28 and B29

Session F3J

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3J-4

To answer the second research question—how are these

categories related to each other—three Pearson correlations

on any two of three levels was calculated. Table III shows

all three correlations are statistically significant: between

recall and application, r = .38 (n=126, p<.05); between recall

and problem-solving, r = .33 (n=126, p<.05); between

application and problem solving r = .52 (n=126, p<.05).
TABLE III

PEARSON CORRELATION COEFFICIENTS (R) BETWEEN CATEGORIES AMONG

RECALL, APPLICATION, AND PROBLEM SOLVING

Categories Recall Application

Problem Solving .33 .52
Application .38

The Pearson correlation coefficients, shown in Table III,

suggest that knowing the meaning of functions and their

arguments helps students use functions and select an

appropriate function for a problem solving scenario; the

application score positively affect problem solving scores.

That is, if students failed to apply a function correctly, it’s

very likely that they do not know which function to use or

cannot use functions correctly in a problem solving scenario.

A further investigation of students’ use of functions in

both application category and problem solving category

revealed that common errors included wrong type of

arguments (numeric when text is required, or vice versa),

missing arguments, wrong logic statements, and wrong

function syntax. We also noticed that students either did not

understand or forgot the purpose of double quotation

marks—indicating any alphanumeric character embedded in

between pairs of them should be treated as text data.

Students’ data representation in CT seemed weak. This is

one of many reasons for which they could not use functions

correctly. We also found that many participants did nothing

more than the basic statistical functions in the problem

solving category.

DISCUSSION

This study was to empirically investigate the challenges that

non-computing major students faced in learning the use of

spreadsheet functions. To a certain extent, our finding

should also be applicable to novice learners when acquiring

CT knowledge. Many researchers and educators in computer

science community advocated that CT is an important skill

for contemporary learners [1]-[3], [5], [7].

In our teaching experience, some areas of CT seemed

especially difficult for non-computing majors. We created

our measurement instrument based on two features of CT,

application (abstraction of a problem) and problem solving,

and added the recall (memory retention) category using

spreadsheet functions to compare novices’ performance in

each category. We found that students’ overall performance

dropped significantly from recall to application and the

performance in both application and problem solving

categories were low—the correction rate was below 40%

when statistical functions were excluded.

Our results show that even though students can recall

the meaning of spreadsheet functions, they cannot use them

correctly, with cue (application) and without cue (problem

solving). Apparently, to formally represent a problem in

computational format is still not within their mental skills,

even after they are hinted to use a possibly productive

function. When we further examined the source of their

errors, their performance seemed to indicate that they have

trouble differentiating different types of data or to follow the

function syntax precisely. We hypothesized that when

students are not familiar with the concept, the input data

must follow an exact format; otherwise students will have

difficulty recognizing them. In some disciplines, the

outcome may be a continuum and sometime negotiable. In

computer science, engineering, mathematics, and others

alike, the science is to be precise. We also hypothesized that

the students do not have an integrated mental representations

about different type of data and how to deal with them. To

such students, data, whether it is numeric or text, are simply

combinations of alphabets that computers should be able to

store and process; whereas numeric data are treated very

differently by a computer than text data. Weak CT leads the

students to believe that computers are like humans who can

treat these data as the same.

Based on correlation coefficients of those three

categories, recall scores positively correlate with both

application and problem solving scores; application scores

also positively correlate with problem solving scores. This

result suggests that teaching should start with recall, but we

need concentrate especially on application category, which

seems to trouble most students. Better yet, the instructional

strategies should encourage students to construct mental

tools about computing. Pedagogical strategies such as

problem-based learning [8] or case-based reasoning [9] may

be useful for students to internalize CT skills and create

individualized strategies fitting their styles.

In the problem-solving category, many students did not

answer the non-statistical function parts. This fact

demonstrates in new learning, transferring from rote

memory to problem solving is still difficult for novice

learners. In addition, using text data without double

quotation marks suggests that novice learners rely heavily on

what they already know to make sense of new knowledge. In

most part of our daily experiences, there is no difference

between ―123‖ and 123. However, in a computational data

representation, ―123‖ is a text data that has no particular

meaning and 123 is a numerical value that indicates a

quantity. When teaching CT to non-computational majors,

we must consider and perhaps pinpoint these preexisting

mental representations and help learners overcome such

problems early in their learning.

For future work, we should investigate the effect of a

CT skill instruction before introducing spreadsheet functions

on students’ performances. In addition, computer science

educators should examine whether CT skills help learning in

other scientific domains including social sciences. Teaching

CT in all disciplines, as is right now, is a concept well

Session F3J

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3J-5

accepted in the computer science education community. To

make a broader impact on our society, this concept must be

diffused to other disciplines so it can become a core of our

education. This diffusion needs empirical data support.

A limitation of this work is the small number of

questions in the problem solving category that had only five

questions that used non-statistical functions. The

measurement instrument can be improved by adding more

functions from each category in the spreadsheet application

in all three categories. This may help us analyze the exact

computing thinking skills that are difficult to novice learners

and why these skills are difficult for them. This will also

help us understand the current status of CT in novices’

knowledge and improve teaching CT more effectively.

CONCLUSION

Computational thinking is not about computer programming.

Instead, it is a cognitive tool that helps us understand and

solve problems. Nowadays, CT is an increasingly important

skill for success in work and society where more and more

tasks require problem solving skills. In addition, the ubiquity

of technology also makes CT a vital competency like

literacy and math. As a result, higher education has

pronounced the emphasis to provide opportunities for

students to enhance CT skills—CT is gaining much

momentum rapidly.

Teaching CT to non-computing majors can be

challenging. If CT were to be part of our core competency,

we educators will have to conquer this challenge sooner or

later. Understanding the learners and the tasks can be a

pivotal step to making CT part of all curricula. This paper

presents an empirical study that showed some of the

weakness of novice learners. The findings provided us with

the direction for our next step of teaching CT and showed a

possibly effective approach to improve CT in non-

computing majors.

ACKNOWLEDGMENTS

We would like to thank Yu-Hui Ching and Yu-Chang Hsu

for helping us collect data. We also want to thank Robert St.

Amant for providing useful information for the literature

review. Frank Ritter gave comments that helped improve

this paper.

REFERENCES

[1] M. Guzdial, ―Education: Paving the way for

computational thinking,‖ Communications of the ACM,

vol. 51, no. 8, pp. 25-27, 2008.

[2] J. M. Wing, ―Computational thinking,‖

Communications of the ACM, vol. 49, no. 3, pp. 33-35,

2006.

[3] Committee for the Workshops on Computational

Thinking, National Research Council, Report of a

workshop on the scope and nature of computational

thinking. Washington, DC: National Academies Press,

2010.

[4] I. Lee et al., ―Computational thinking for youth in

practice,‖ ACM Inroads, vol. 2, no. 1, pp. 32-37, 2011.

[5] J. J. Lu and G. H. L. Fletcher, ―Thinking about

computational thinking,‖ SIGCSE Bulletin, vol. 41, no.

1, pp. 260-264, 2009.

[6] L. W. Anderson et al., Eds., A taxonomy for learning,

teaching, and assessing: a revision of Bloom’s

taxonomy of educational objectives, Abridged. New

York: Longman, 2001.

[7] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan,

and A. L. Hosking, ―A multidisciplinary approach

towards computational thinking for science majors,‖

SIGCSE Bulletin, vol. 41, no. 1, pp. 183-187, 2009.

[8] C. E. Hmelo-Silver, ―Problem-based learning: What

and how do students learn?,‖ Educational Psychology

Review, vol. 16, no. 3, pp. 235-266, 2004.

[9] J. L. Kolodner, Case-Based reasoning. San Mateo CA:

Morgan Kaufman.

AUTHOR INFORMATION

Kuo-Chuan (Martin) Yeh, Assistant Professor, Department

of Computer Science and Engineering, The Pennsylvania

State University, martin.yeh@psu.edu

Ying Xie, Assistant Professor, Graduate Department of

Educational Leadership and Instructional Design, Idaho

State University, dr.ying.xie@gmail.com

Fengfeng Ke, Assistant Professor, Department of

Educational Psychology and Learning Systems, The Florida

State University, fke@fsu.edu

